Trigonometric Function:

To Find Limit at x Approaches to a Point a:

By direct compensation

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

To Find One Side Limit:

By direct compensation

$$
\begin{aligned}
& \lim _{x \rightarrow a^{+}} f(x)=f(a) \\
& \lim _{x \rightarrow a^{-}} f(x)=f(a)
\end{aligned}
$$

To Find Limit at x Approaches to a Point $\pm \infty$:

By direct compensation

$$
\lim _{x \rightarrow \pm \infty} f(x)=f(\pm \infty)
$$

Note:

$$
\begin{aligned}
\sin \pm \infty & =\text { D.N.E }, \cos \pm \infty=\text { D.N.E } \\
\tan \pm \infty & =\text { D.N.E, } \cot \pm \infty=\text { D.N.E, } \\
\sec \pm \infty & =\text { D.N.E, } \csc \pm \infty=\text { D.N.E }
\end{aligned}
$$

If we solve a limit of \sin or cos and the answer after compensation is $0 \cdot \infty$ we use the sandwich theorem

The Vertical Asymptotic for Trigonometric Function:

a) $\sin x, \cos x$

They have not vertical asymptotes.
b) $\boldsymbol{\operatorname { t a n }} x, \sec x$

It is all $x= \pm \frac{(2 n+1)}{2} \pi, \quad n=0,1,2, \ldots$
c) $\cot x, \csc x$

It is all $x= \pm n \pi, \quad n=0,1,2$

